Proposed test cases based on satellite images Guoyong Wena

Tamás Várnai^a
Lazaros Oreopoulos^a
Alexander Marshak^b
Robert Cahalan^b

^aUniversity of Maryland, Baltimore County ^bNASA Goddard Space Flight Center

Use MODIS, MISR, ASTER, CERES Observations

705 km, 10:30 AM local time, descending node, Sun-synchronous, near polar

MODIS

36 bands from 0.4 to 14.4um

Resolution: 250m(band 1-2)

 (at nadir) 500m(band 3-7)
 1km(bands 8-36)

Swath: 2330 km

MISR

- 9 cameras (4 bands, VIS, NIR) 1 nadir viewing others: forward and afterward view angles of 26.1, 45.6, 60., 70.5 degrees
- Resolution 270m, 550m or 1.1km
- Swath: 360 km

ASTER

• 14 bands, 0.5~11 microns

High resolution

15m: VNIR (0.5-0.86um)

30m: SWIR (1.6-2.4um)

90m: TIR (8.2-11.7um)

· Swath: 60km

CERES

3 broadbands:

SW: 0.3-5.0 microns

Window: 8-12 microns

Total: 0.3 - > 200 microns

Resolution: 20km at nadir

Swath: Limb to limb

Biaxial scan mode

Properties of Phase 3 Case

Observations

- ✓ MODIS VIS and NIR nadir reflectance
- ✓ MISR angular variation of radiance
- ✓ ASTER high resolution
- ✓ <u>CERES</u> broadband TOA SW, LW fluxes

Products

- √ cloud phase, optical depth, effective radius
- √ cloud top height (derived)
- ✓ aerosol optical thickness model
- ✓ surface albedo and BRDF
- √ temperature

Proposed Case

A sub-image of 68 x 80 of 1km MODIS in Brazil centered at (-17.10°,-42.16°) acquired at 13:15 UTC (10:15AM local)

August 9, 2001

SZA: 41° SAM: 38°

Why Brazil?

A sub-image from MODIS

Complex Both in Cloud Field and Surface Properties

MODIS Image (1km)

ASTER Image (30m)

MODIS Nadir Reflectance

MODIS Brightness Temperature

ASTER Image

MISR Images at 0.67microns

CERES SW and LW Fluxes

MODIS Cloud Products

MODIS Cloud Products (cont.)

MODIS Aerosol Products

MODIS Surface Albedo

MODIS Temperatures

Summary

- 1. Use MODIS products as inputs to simulate radiative transfer in realistic cloud fields.
- 2. The output can be compared with observations (MODIS, MISR, CERES).
- 3. High resolution image from ASTER are useful to understand the simulations.
- 4. Heating rate profiles useful for understanding of role of solar radiation